

Optimization Techniques on GPU: A Survey

Rashmi Sharan Sinha

SBS State Technical Campus,

Ferozepur, Punjab [INDIA]

Email:sinharashmisinha@hotmail.com

Satvir Singh

SBS State Technical Campus,

Ferozepur, Punjab [INDIA]

Email: satvir15@gmail.com

Abstract—In this paper, we present a comprehensive

survey on parallelizing computations involved in

optimization problem, on GPU using CUDA. Many

researchers have reported significant speedup using

CUDA on GPU. Stochastic algorithms, Metaheuristic

algorithms and Heuristic algorithms i.e., Mixed Integer

Non-linear Programming (MINLP), Central Force

Optimization (CFO), Genetic Algorithms (GA), Particle

Swarm Optimization (PSO), etc. are exploring/exploiting

the processing power of GPU. GPGPU shows tremendous

speedups of 6x to 7x in Steady State Genetic Algorithm to

10,000x speedups in CFO. GPU have multithread cores

with high memory bandwidth which allow for greater

ease of use and also more radially support a layer body of

applications.

Index Terms—GPU, GPGPU, CUDA, MINLP,

PGMOEA, CGA, CFO, Optimization Algorithms.

I. INTRODUCTION

General Purpose GPU Computing really took off

when CUDA and Stream arrived in late 2006 [1].

GPU constitute a tremendous step towards a usable,

suitable, scalable and manageable future-proof

programming model [2]. Optimization workloads are

very parallel, and so GPUs developed as large-scale

parallel computation machines [3] [4] [5] [6].

Originally GPGPU processing was done by tricking

the GPU by disguising computation loads as graphic

loads [7]. With the advent and large availability of

General Purpose Graphics Processing Units and the

development and straightforward applicability of the

Compute Unified Device Architecture platform,

several applications are being benefited by the

reduction of the computing time [8]. GPGPU-based

architecture, aiming at improving the performance of

computationally demanding optimizations for

identifiable specific mapping parameters, one can

reduce total execution time drastically and also,

improve greatly the optimization process

convergence. Application performance can be

significantly improved by applying memory-access

pattern-aware optimizations that can exploit

knowledge of the characteristics of each access

pattern [3]. To evaluate the effectiveness of our

methodology, we have created a tool that

incorporates our proposed algorithmic optimizations

and report on execution speedup using selected

benchmark kernels that cover a wide range of

memory access patterns commonly found in GPGPU

workloads [9]. Graphics Processing Units (GPUs) are

widely used among developers and researchers as

accelerators for applications outside the domain of

traditional computer graphics. In particular, GPUs

have become a viable parallel accelerator for

scientific computing with low investment in the

necessary hardware.

II. MINLP OPTIMIZATION

With the increasing advent of GPGPU using CUDA,

the stochastic algorithm of advanced Genetic

Algorithm is used to solve non-convex mixed integer

Non-linear Programming (MINLP) and non-convex

Non-linear Programming (NLP) problems [10].

MINLP refers to mathematical programming

algorithms that can optimize both continuous and

integer variables, in a context of nonlinearities in the

objective function and/or constraints. MINLP

problems involve the simultaneous optimization of

discrete and continuous variables. These problems

often arise where one is trying to simultaneously

optimize the system structure and parameters. This is

difficult because optimal topology is dependent upon

parameter levels and vice versa [10]. In many design

optimization problems, the structural topology

influences the optimal parameter settings so a simple

de-coupling approach does not work: it is often not

possible to isolate these and optimize each separately.

Finally, the complexity of these problems depends

upon the form of the objective function. In the past,

solution techniques typically depended upon

objective functions that were single-attribute and

linear (i.e., minimize cost). However, real problems

often require multi-attribute objectives such as

minimizing costs while maximizing safety and/or

reliability, ensuring feasibility, and meeting

scheduled deadlines. In these cases, the goal is to

optimize over a set of performance indices which

may be combined in a nonlinear objective function.

Through this algorithm the intensity of each

individual is beamed using entropy measures. The

results of the tests shows a significant speedup of 42x

with single precision and 20x with double precision

over nVidia Fermi C2050 GPU [10].

III. PGMOEA

The general Purpose GPU is efficiently used in

optimizing the multiple objective problems. The

particle gradient Multiobjective Evolutionary

Algorithm (PGMOEA) is used to solve optimization

problems. PGMOEA is first experimented on CPU

and then after parallelizing the algorithm executed

upon GPU which formed a great speedup results [11].

The experiment is conducted upon two different

examples. The first example shows a speedup of 9x

with nVidia GeForce GTX285 then CPU result,

while the second example is 10x faster than that of

CPU [11]. The speedup comparison is shown below

in Table 1.
Table 1. Speedup Comparison (source [11])

Algorithm Example 1 Example 2

 Time(s) Speedup Time(s) Speedup

PGMOEA on

GPU

0.97 9.95 0.83 10.64

PGMOEA on
CPU

9.01 1.04 8.02 1.10

IV. CELLULAR GENETIC ALGORITHM

Genetic Algorithm have a subclass known as Cellular

Genetic Algorithm (cGA) which provides the data of

population structured in several specified topologies

[12]. The cGA is compared upon CPU, single GPU

and multiGPU. The nVidia GTX285 multiGPU test

shows a speedup of 8 to 771 times then single GPU

[12]. The multiGPU is more prominent in paralleling

the algorithm and producing accurate results as there

is a need of special maintenance to perform same

experiment upon single GPU.

V. DIFFERENTIAL EVOLUTIONARY

ALGORITHM

GPGPU is proved to be great architectural unit in

reducing the processing time [13]. The Differential

Algorithm which is one of the part of Evolutionary

Algorithm is implemented upon CPU using C-

CUDA. The motivating features of Differential

Algorithm are easy for parallelization and

convergence properties which intern gives an

appropriate result. The algorithm is first tested upon

CPU then on nVidia GTX285 with 1GB GDDR3

GPU with the speedup outcomes. GPU gives 20x to

35x faster results which proves GPU is much more

effective and efficient than Differential Algorithm on

CPU [13]. The Speedup comparison results are

shown in Table 1.

VI. CELLULAR AUTOMATA

Cellular Automata have various real life application

like physical system modeling, road traffic

simulation, artificial life simulation, etc [14], [15],

[16]. Cellular automata design evolved from

evolutionary algorithm and a part of Genetic

Algorithm which is complex in nature. The

Algorithm is parallelized and implemented upon

GPGPU shows an efficient reduction in execution

time. The rules of Cellular Automata take longer time

period inevolution in sequential execution. The same

Genetic Algorithm shows 31.34x to 314.94x speedup

when executed upon nVidia GeForce FX280 GPU

which is a significant reduction in execution time

[17].

VII. ACCELERATING PSO

PSO is a metaheuristic algorithm works by having a

swarm of particles [18]. These particles are moved

around in the search-space according to a few simple

formulae. The movements of the particles are guided

by their own best known position in the search-space

as well as the entire swarm’s best known position

[19]. When improved positions are being discovered

these will then come to guide the movements of the

swarm. Particle Swarm Optimization (PSO) is one of

the type of Evolutionary Algorithm used to optimize

the multiple objective problems. When an

optimization problem involves more than one

objective function, the task of finding one or more

optimal solutions is known as multi-objective

optimization [18]. The objects are having random

velocities and positions. The algorithm is tested upon

three different platforms of C, Matlab and C-CUDA.

The parallel implementation of PSO on nVidia GTX

280 gives 17 to 41 times speedup in computing time

in C-CUDA as compared with the C and Matlab as

Shown in Fig.1 [20].

Figure 1. Computing time for C-CUDA, C AND MATLAB

(Source [20])

VIII. STEADY STATE GENETIC ALGORITHM

ON GPU

The optimization problem is effectively solved by the

means of Evolutionary Computing [21]. The steady

state Genetic Algorithm used to access optimization

algorithms. These algorithms basically have selection

for the reproduction and selection of survival

implementation with concurrent kernel execution

[22]. The study is first performed upon CPU then

with nVidia GeForce GTX480 GPU gives a speedup

of 3x to 6x then the previous implementation on CPU

[12]. The executed time is greatly reduced using

general purpose GPU. The population individual data

is accessed parallelaly which effectively speedup the

process.

IX. BINARY-CODED AND REAL-CODED

GENETIC ALGORITHM

Genetic Algorithm is tested and evaluated on parallel

implementation on C-CUDA API on the parameters

like population size, number of threads, problem size

and problem of differing complexities with variation

in the population individuals [12]. For an efficient

implementation on GPGPU the solution is thoroughly

implemented along with the operators like random

number generation, initialization, selection operation,

and mutation operations [13]. The nVidia GeForce

8800GTX shows overall speedup of 40-400 on three

different test problems [23]. Thus parallel

implementation is more effective then sequential

process as compared with clock time and accuracy.

X. CENTRAL FORCE OPTIMIZATION (CFO)

The metaheurestic algorithm Central Force

Optimization (CFO) is implemented upon GPGPU

using local neighborhood and implemented CFO

concepts [24]. The calculation of CFO is dependent

upon the movement of probes which are scattered all

over the space. The probes then slowly move towards

the probe having highest mass or fitness. PR-CFO is

the most evaluated algorithm with the measures of

initial position and acceleration vectors, fitness

evaluation and probe movements [25]. The test

problems are having the dimension of 30 to 100 of

four different examples of Pseudo random CFO (PR-

CFO). The PR-CFO is tested with four test types i.e.

Ring, Standard, CUDA, CUDA Ring. PR-CFO

shows a speedup of 4 to 400 using CUDA. PR-CFO

ring and PR-CFO CUDA ring on nVidia Tesla C1060

shows 10,000 times faster results as compared with

standard PR-CFO algorithm [25].

XI. CONCLUSION

In this paper we present different optimization

algorithm with tremendous speedup in the

computation time. MINLP archived an overall

speedup of 20x to 42x using nVidia Tesla C2050

GPU as compared to intel Core i7 920 CPU

processor. The new binary-coded and real-coded

Genetic Algorithm using CUDA leads to a

performance improvement with the speedup of 40x to

400x. Central Force Optimization (CFO) results in

reduction of computing time and a speedup of

10,000x. The Cellular Automata shows 314.97x as

compared with the sequential implements.

XII. REFERENCES

[1] K. S. Perumalla, “Discrete-event execution alternatives on

general purpose graphical processing units (GPGPUs),” in
Principles of Advanced and Distributed Simulation, 2006. PADS

2006. 20th Workshop on, 2006, pp. 74–81. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1630711
[2] J. A. Jablin, P. McCormick, and M. Herlihy, “Scout: High-

performance heterogeneous computing made simple,” in Parallel

and Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on, 2011, pp. 2093–2096.

[3] Fast Parallel Markov Clustering in Bioinformatics Using

Massively Parallel Graphics Processing Unit Computing, 2010.
[4] Data Processing in Space Weather Physics Models in the

Meridian Project, 2010.

[5] Design and Implementation of Remote Parallel Computing
System Based on Multi-Platform, 2010.

[6] An efficient parallel algorithm for evaluating join queries on
heterogeneous distributed systems, 2009.

[7] Profiling General Purpose GPU Applications, 2009.

[8] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston,
J. Owens, M. Segal, M. Papakipos, and I. Buck, “Gpgpu:

generalpurpose computation on graphics hardware,” in

Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. ACM, 2006, p. 208.

[9] Evolving a CUDA kernel from an nVidia template, 2010.

[10] Advanced genetic algorithm to solve MINLP problems over
GPU, 2011.

[11] Particle Gradient Multi-objective Evolutionary Algorithm

Based on GPU with CUDA, 2010.
[12] A multi-GPU implementation of a Cellular Genetic

Algorithm, 2010.

[13] Differential evolution algorithm on the GPU with C-CUDA,
2010.

0

2000

4000

6000

8000

10000

12000

14000

16000

f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

s)

Optimazation Problem

C-CUDA

C

MATLAB

[14] L. J. Durbeck and N. J. Macias, “The cell matrix: an

architecture for nanocomputing,” Nanotechnology, vol. 12, no. 3,
p. 217, 2001.

[15] M. Gardner, “Mathematical games: The fantastic

combinations of john conways new solitaire game life,” Scientific
American, vol. 223, no. 4, pp. 120–123, 1970.

[16] M. Tomassini, M. Sipper, and M. Perrenoud, “On the

generation of high-quality random numbers by two-dimensional
cellular automata,” Computers, IEEE Transactions on, vol. 49, no.

10, pp. 1146–1151, 2000.

[17] GPU Accelerators for Evolvable Cellular Automata, 2009.
[18] J. Kennedy, R. C. Eberhart, and Y. Shi, “Swarm intelligence.

2001,” Kaufmann, San Francisco, vol. 1, pp. 700–720, 2001.

[19] J. Kennedy and R. Mendes, “Population structure and particle
swarm performance,” in Evolutionary Computation, 2002.

CEC’02. Proceedings of the 2002 Congress on, vol. 2. IEEE, 2002,

pp. 1671–1676.
[20] Swarm’s flight: Accelerating the particles using C-CUDA,

2009.

[21] F. Stentiford, “An evolutionary programming approach to the

simulation of visual attention,” in Evolutionary Computation,
2001. Proceedings of the 2001 Congress on, vol. 2, 2001, pp. 851–

858. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=934279
[22] R. Arora, R. Tulshyan, and K. Deb, “Parallelization of binary

and real-coded genetic algorithms on GPU using CUDA,” in

Evolutionary Computation (CEC), 2010 IEEE Congress on, 2010,
pp. 1–8. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5586260

[23] Parallelization of binary and real-coded genetic algorithms on
GPU using CUDA, 2010.

[24] A. Stefek, “Benchmarking of heuristic optimization methods,”

in MECHATRONIKA, 2011 14th International Symposium. IEEE,
2011, pp. 68–71.

[25] Central Force Optimization on a GPU: A case study in high

performance metaheuristics using multiple topologies, 2011.

